วันอังคารที่ 16 มิถุนายน พ.ศ. 2558

ประโยคเปิด

ประโยคเปิด (Open sentence)

             บทนิยาม ประโยคเปิดคือ ประโยคบอกเล่า ซึ่งประกอบด้วยตัวแปรหนึ่งหรือมากกว่าโดยไม่เป็นประพจน์ แต่จะเป็นประพจน์ได้เมื่อแทนตัวแปรด้วยสมาชิกเอกภพสัมพัทธ์ตามที่กำหนดให้ นั่นคือเมื่อแทนตัวแปรแล้วจะสามารถบอกค่าความจริง

ประโยคเปิด เช่น
1.เขาเป็นนักบาสเกตบอลทีมชาติไทย
2. x + 5 =15
3. y < - 6

ประโยคที่ไม่ใช่ประโยคเปิด เช่น
1.10 เป็นคำตอบของสมการ X-1=7
2.โลกหมุนรอบตัวเอง
3.จงหาค่า X จากสมการ 2x+1=8

ตัวเชื่อม (connective)

1. ตัวเชื่อมประพจน์ ” และ ” ( conjunetion ) ใช้สัญลักษณ์แทน Ùและเขียนแทนด้วย P Ù Qแต่ละประพจน์มีค่าความจริง(truth value) ได้ 2 อย่างเท่านั้น คือ จริง(True) หรือ เท็จ(False) ถ้าทั้ง P และ Qเป็นจริงจะได้ว่า PÙQ เป็นจริง กรณีอื่นๆ P Ù Q เป็นเท็จ เราให้นิยามค่าความจริงP Ù Q 
โดยตารางแสดงค่าความจริง (truth table) ดั้งนี้



P
Q
P Ù Q
T
T
F
F
T
F
T
F
T
F
F
F


ตัวอย่าง 5+1 = 6 Ù 2 น้อยกว่า 3 (จริง) 
 5+1 = 6 Ù 2 มากกว่า 3 (เท็จ)
5+1 = 1 Ù 2 น้อยกว่า 3 (เท็จ)
 5+1 = 1 Ù 2 มากกว่า 3 (เท็จ)

2. ตัวเชื่อมประพจน์ ” หรือ ” ( Disjunction ) ใช้สัญลักษณ์แทน V และเขียนแทนด้วย P V Q และเมื่อ P V Q
จะเป็นเท็จ ในกรณีที่ทั้ง P และ Q เป็นเท็จเท่านั้น กรณีอื่น P V Q เป็นจริง เรา

ให้นิยามค่าความจริงของ P V Q
ตัวอย่างตารางค่าความจริง ดังนี้


P
Q
P V Q
T
T
F
F
T
F
T
F
T
T
T
F
ตัวอย่าง 5 + 1 = 6 V 2 น้อยกว่า 3 (จริง)

              5 + 1 = 6 V 2 มากกว่า 3 (จริง)

              5 + 1 = 1V 2 น้อยกว่า 3 (จริง)
 
              5 + 1 = 1V 2 มากกว่า 3 (เท็จ)

3. ตัวเชื่อมประพจน์ “ ถ้า….แล้ว” Conditional) ใช้สัญลักษณ์แทน ® และเขียนแทนด้วยP®Q
นิยามค่าความจริงของ P®Q โดยแสดงตารางค่าความจริงดังนี้


P
Q
P®Q
T
T
F
F
T
F
T
F
T
F
T
T

ตัวอย่าง 1 < 2 ® 2 < 3 (จริง) 
1 < 2 ® 3 < 2 (เท็จ) 
2 < 1 ® 2 < 3 (จริง) 

2 < 1 ® 3 < 2 (จริง)

4. ตัวเชื่อมประพจน์ “ก็ต่อเมื่อ (Biconditional) ใช้สัญลักษณ์แทน « และเขียนแทนด้วยP«Q 
นั้นคือ P«Q จะเป็นจริงก็ต่อเมือ ทั้ง P และ Q เป็นจริงพร้อมกันหรือทั้ง P และ Q เป็นเท็จพร้อมกันตารางแสดงค่าความจริงของ P«Q


P
Q
P«Q
T
T
F
F
T
F
T
F
T
F
F
T


ตัวอย่าง 1 < 2 « 2 < 3 (จริง) 
1 < 2 « 3 < 2 (เท็จ) 
2 < 1 « 2 < 3 (จริง) 
2 < 1 « 3 < 2 (เท็จ)

ไม่มีความคิดเห็น:

แสดงความคิดเห็น